References

The following references have been collected from 148 research publications

Reference source
Hegele, J., Buetler, T., & Delatour, T. (2008). Comparative LC–MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products. Analytica chimica acta, 617(1-2), 85-96.
Hellwig, M., Kühn, L., & Henle, T. (2018). Individual Maillard reaction products as indicators of heat treatment of pasta—A survey of commercial products. Journal of Food Composition and Analysis, 72, 83-92.
Hellwig, M., Rückriemen, J., Sandner, D., & Henle, T. (2017). Unique pattern of protein-bound Maillard reaction products in manuka (Leptospermum scoparium) honey. Journal of Agricultural and Food Chemistry, 65(17), 3532-3540.
Liang, Z., Li, L., Qi, H., Zhang, X., Xu, Z., & Li, B. (2016). Determination of free-form and peptide bound pyrraline in the commercial drinks enriched with different protein hydrolysates. International journal of molecular sciences, 17(7), 1053.
Schwarzenbolz, U., Hofmann, T., Sparmann, N., & Henle, T. (2016). Free Maillard reaction products in milk reflect nutritional intake of glycated proteins and can be used to distinguish “organic” and “conventionally” produced milk. Journal of agricultural and food chemistry, 64(24), 5071-5078.
Zhang, G., Huang, G., Xiao, L., & Mitchell, A. E. (2011). Determination of advanced glycation endproducts by LC-MS/MS in raw and roasted almonds (Prunus dulcis). Journal of Agricultural and Food Chemistry, 59(22), 12037-12046.
Assar, S. H., Moloney, C., Lima, M., Magee, R., & Ames, J. M. (2009). Determination of N ɛ-(carboxymethyl) lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino acids, 36(2), 317-326.
Gómez-Ojeda, A., Jaramillo-Ortíz, S., Wrobel, K., Wrobel, K., Barbosa-Sabanero, G., Luevano-Contreras, C., ... & Garay-Sevilla, M. E. (2018). Comparative evaluation of three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of Nε-carboxymethyl lysine in food samples. Food chemistry, 243, 11-18.
He, J., Zeng, M., Zheng, Z., He, Z., & Chen, J. (2014). Simultaneous determination of N ε-(carboxymethyl) lysine and N ε-(carboxyethyl) lysine in cereal foods by LC–MS/MS. European Food Research and Technology, 238(3), 367-374.
Jiao, Y., He, J., Li, F., Tao, G., Zhang, S., Zhang, S., ... & Chen, J. (2017). Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine in tea and the factors affecting their formation. Food chemistry, 232, 683-688.
Loaëc, G., Jacolot, P., Helou, C., Niquet-Léridon, C., & Tessier, F. J. (2014). Acrylamide, 5-hydroxymethylfurfural and Nε-carboxymethyl-lysine in coffee substitutes and instant coffees. Food Additives & Contaminants: Part A, 31(4), 593-604.
Niquet-Léridon, C., & Tessier, F. J. (2011). Quantification of Nε-carboxymethyl-lysine in selected chocolate-flavoured drink mixes using high-performance liquid chromatography–linear ion trap tandem mass spectrometry. Food Chemistry, 126(2), 655-663.
Niquet-Léridon, C., Jacolot, P., Niamba, C. N., Grossin, N., Boulanger, E., & Tessier, F. J. (2015). The rehabilitation of raw and brown butters by the measurement of two of the major Maillard products, Nε-carboxymethyl-lysine and 5-hydroxymethylfurfural, with validated chromatographic methods. Food chemistry, 177, 361-368.
Niu, L., Sun, X., Tang, J., Wang, J., Rasco, B. A., Lai, K., ... & Huang, Y. (2017). Formation of advanced glycation end-products in fish muscle during heating: Relationship with fish freshness. Journal of Food Composition and Analysis, 63, 133-138.
Nomi, Y., Annaka, H., Sato, S., Ueta, E., Ohkura, T., Yamamoto, K., ... & Otsuka, Y. (2016). Simultaneous quantitation of advanced glycation end products in soy sauce and beer by liquid chromatography-tandem mass spectrometry without ion-pair reagents and derivatization. Journal of agricultural and food chemistry, 64(44), 8397-8405.
Poojary, M. M., Zhang, W., Greco, I., De Gobba, C., Olsen, K., & Lund, M. N. (2020). Liquid chromatography quadrupole-Orbitrap mass spectrometry for the simultaneous analysis of advanced glycation end products and protein-derived cross-links in food and biological matrices. Journal of Chromatography a, 1615, 460767.
Scheijen, J. L., Clevers, E., Engelen, L., Dagnelie, P. C., Brouns, F., Stehouwer, C. D., & Schalkwijk, C. G. (2016). Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chemistry, 190, 1145-1150.
Taş, N. G., & Gökmen, V. (2018). Effect of roasting and storage on the formation of Maillard reaction and sugar degradation products in hazelnuts (Corylus avellana L.). Journal of agricultural and food chemistry, 67(1), 415-424.
Troise, A. D., Fiore, A., Wiltafsky, M., & Fogliano, V. (2015). Quantification of Nε-(2-Furoylmethyl)-l-lysine (furosine), Nε-(Carboxymethyl)-l-lysine (CML), Nε-(Carboxyethyl)-l-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chemistry, 188, 357-364.
Yu, L., Chai, M., Zeng, M., He, Z., & Chen, J. (2018). Effect of lipid oxidation on the formation of Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine in Chinese-style sausage during storage. Food chemistry, 269, 466-472.
Zhou, Y., Lin, Q., Jin, C., Cheng, L., Zheng, X., Dai, M., & Zhang, Y. (2015). Simultaneous Analysis of Nε‐(Carboxymethyl) Lysine and Nε‐(Carboxyethyl) Lysine in Foods by Ultra‐Performance Liquid Chromatography‐Mass Spectrometry with Derivatization by 9‐Fluorenylmethyl Chloroformate. Journal of food science, 80(2), C207-C217.
Hull, G. L., Woodside, J. V., Ames, J. M., & Cuskelly, G. J. (2012). Nε-(carboxymethyl) lysine content of foods commonly consumed in a Western style diet. Food Chemistry, 131(1), 170-174.
Delatour, T., Hegele, J., Parisod, V., Richoz, J., Maurer, S., Steven, M., & Buetler, T. (2009). Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography–electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. Journal of Chromatography A, 1216(12), 2371-2381.
Fenaille, F., Parisod, V., Visani, P., Populaire, S., Tabet, J. C., & Guy, P. A. (2006). Modifications of milk constituents during processing: A preliminary benchmarking study. International Dairy Journal, 16(7), 728-739.
Amigo‐Benavent, M., Villamiel, M., & del Castillo, M. D. (2007). Chromatographic and electrophoretic approaches for the analysis of protein quality of soy beverages. Journal of separation science, 30(4), 502-507.
Bosch, L., Alegrı, A., Farré, R., & Clemente, G. (2008). Effect of storage conditions on furosine formation in milk–cereal based baby foods. Food chemistry, 107(4), 1681-1686.
Cardelle-Cobas, A., Moreno, F. J., Corzo, N., Olano, A., & Villamiel, M. (2005). Assessment of initial stages of Maillard reaction in dehydrated onion and garlic samples. Journal of Agricultural and Food Chemistry, 53(23), 9078-9082.
Cárdenas‐Ruiz, J., García‐Villanova, B., & Guerra‐Hernández, E. (2003). Determination of furosine in honey. Journal of liquid chromatography & related technologies, 26(2), 317-326.
De Noni, I., Pellegrino, L., & Masotti, F. (2004). Survey of selected chemical and microbiological characteristics of (plain or sweetened) natural yoghurts from the Italian market. Le Lait, 84(5), 421-433.
Delgado-Andrade, C., Rufián-Henares, J. A., & Morales, F. J. (2007). Lysine availability is diminished in commercial fibre-enriched breakfast cereals. Food Chemistry, 100(2), 725-731.
Ferrer, E., Alegrıa, A., Courtois, G., & Farre, R. (2000). High-performance liquid chromatographic determination of Maillard compounds in store-brand and name-brand ultra-high-temperature-treated cows’ milk. Journal of Chromatography A, 881(1-2), 599-606.
Ferrer, E., Alegría, A., Farré, R., Abellán, P., Romero, F., & Clemente, G. (2003). Evolution of available lysine and furosine contents in milk‐based infant formulas throughout the shelf‐life storage period. Journal of the Science of Food and Agriculture, 83(5), 465-472.
Gaggiotti, S., Shkembi, B., Sacchetti, G., & Compagnone, D. (2019). Study on volatile markers of pasta quality using GC-MS and a peptide based gas sensor array. LWT, 114, 108364.
Garcı́a-Baños, J. L., Villamiel, M., Olano, A., & Rada-Mendoza, M. (2004). Study on nonenzymatic browning in cookies, crackers and breakfast cereals by maltulose and furosine determination. Journal of Cereal Science, 39(2), 167-173.
Giannetti, V., Mariani, M. B., & Mannino, P. (2013). Furosine as a pasta quality marker: evaluation by an innovative and fast chromatographic approach. Journal of food science, 78(7), C994-C999.
Li, Y., Liu, X., Meng, L., & Wang, Y. (2018). Qualitative and quantitative analysis of furosine in fresh and processed ginsengs. Journal of ginseng research, 42(1), 21-26.
Marconi, E., Caboni, M. F., Messia, M. C., & Panfili, G. (2002). Furosine: a suitable marker for assessing the freshness of royal jelly. Journal of agricultural and food chemistry, 50(10), 2825-2829.
Nicoletti, I., Cogliandro, E., Corradini, C., Corradini, D., & Pizzoferrato, L. (2000). Determination of furosine in hydrolyzate of processed milk by HPLC using a narrow bore column and diode-array detector.
Rada-Mendoza, M., Olano, A., & Villamiel, M. (2002). Furosine as indicator of Maillard reaction in jams and fruit-based infant foods. Journal of agricultural and food chemistry, 50(14), 4141-4145.
Ríos-Ríos, K. L., Vázquez-Barrios, M. E., Gaytán-Martínez, M., Olano, A., Montilla, A., & Villamiel, M. (2018). 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic. Food chemistry, 240, 1106-1112.
Rufián-Henares, J. A., Delgado-Andrade, C., & Morales, F. J. (2009). Assessing the Maillard reaction development during the toasting process of common flours employed by the cereal products industry. Food Chemistry, 114(1), 93-99.
Sanz, M. L., del Castillo, M. D., Corzo, N., & Olano, A. (2000). Presence of 2-furoylmethyl derivatives in hydrolysates of processed tomato products. Journal of Agricultural and Food Chemistry, 48(2), 468-471.
Sanz, M. L., del Castillo, M. D., Corzo, N., & Olano, A. (2001). Formation of Amadori compounds in dehydrated fruits. Journal of Agricultural and Food Chemistry, 49(11), 5228-5231.
Sanz, M. L., Del Castillo, M. D., Corzo, N., & Olano, A. (2003). 2-Furoylmethyl amino acids and hydroxymethylfurfural as indicators of honey quality. Journal of agricultural and food chemistry, 51(15), 4278-4283.
Villamiel, M., del Castillo, M. D., Corzo, N., & Olano, A. (2001). Presence of furosine in honeys. Journal of the Science of Food and Agriculture, 81(8), 790-793.
Wytrychowski, M., Païssé, J. O., Casabianca, H., & Daniele, G. (2014). Assessment of royal jelly freshness by HILIC LC–MS determination of furosine. Industrial Crops and Products, 62, 313-317.
Aktağ, I. G., & Gökmen, V. (2020). A survey of the occurrence of α-dicarbonyl compounds and 5-hydroxymethylfurfural in dried fruits, fruit juices, puree and concentrates. Journal of Food Composition and Analysis, 103523.
Berk, E., Hamzalıoğlu, A., & Gökmen, V. (2019). Investigations on the Maillard reaction in sesame (Sesamum indicum L.) Seeds induced by roasting. Journal of agricultural and food chemistry, 67(17), 4923-4930.
Daglia, M., Amoroso, A., Rossi, D., Mascherpa, D., & Maga, G. (2013). Identification and quantification of α-dicarbonyl compounds in balsamic and traditional balsamic vinegars and their cytotoxicity against human cells. Journal of food composition and analysis, 31(1), 67-74.
Degen, J., Hellwig, M., & Henle, T. (2012). 1, 2-Dicarbonyl compounds in commonly consumed foods. Journal of agricultural and food chemistry, 60(28), 7071-7079.
Gensberger, S., Glomb, M. A., & Pischetsrieder, M. (2013). Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS. Journal of agricultural and food chemistry, 61(43), 10238-10245.
Gensberger, S., Mittelmaier, S., Glomb, M. A., & Pischetsrieder, M. (2012). Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup. Analytical and bioanalytical chemistry, 403(10), 2923-2931.
Hellwig, M., Degen, J., & Henle, T. (2010). 3-Deoxygalactosone, a “new” 1, 2-dicarbonyl compound in milk products. Journal of agricultural and food chemistry, 58(19), 10752-10760.
Kocadağlı, T., & Gökmen, V. (2014). Investigation of α-dicarbonyl compounds in baby foods by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Journal of agricultural and food chemistry, 62(31), 7714-7720.
Kocadağlı, T., Žilić, S., Taş, N. G., Vančetović, J., Dodig, D., & Gökmen, V. (2016). Formation of α-dicarbonyl compounds in cookies made from wheat, hull-less barley and colored corn and its relation with phenolic compounds, free amino acids and sugars. European Food Research and Technology, 242(1), 51-60.
Lo, C. Y., Li, S., Wang, Y., Tan, D., Pan, M. H., Sang, S., & Ho, C. T. (2008). Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food chemistry, 107(3), 1099-1105.
Marceau, E., & Yaylayan, V. A. (2009). Profiling of α-dicarbonyl content of commercial honeys from different botanical origins: identification of 3, 4-dideoxyglucoson-3-ene (3, 4-DGE) and related compounds. Journal of agricultural and food chemistry, 57(22), 10837-10844.
Mavric, E., Wittmann, S., Barth, G., & Henle, T. (2008). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular nutrition & food research, 52(4), 483-489.
Papetti, A., Mascherpa, D., & Gazzani, G. (2014). Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion. Food chemistry, 164, 259-265.
Rakete, S., Klaus, A., & Glomb, M. A. (2014). Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer. Journal of agricultural and food chemistry, 62(40), 9876-9884.
Suh, J. H., Ho, C. T., & Wang, Y. (2017). Evaluation of carbonyl species in fish oil: An improved LC–MS/MS method. Food Control, 78, 463-468.
Weigel, K. U., Opitz, T., & Henle, T. (2004). Studies on the occurrence and formation of 1, 2-dicarbonyls in honey. European Food Research and Technology, 218(2), 147-151.
Yan, S., Sun, M., Zhao, L., Wang, K., Fang, X., Wu, L., & Xue, X. (2019). Comparison of Differences of α-Dicarbonyl Compounds between Naturally Matured and Artificially Heated Acacia Honey: Their Application to Determine Honey Quality. Journal of Agricultural and Food Chemistry, 67(46), 12885-12894.
Barros, A., Rodrigues, J. A., Almeida, P. J., & Oliva-Teles, M. T. (1999). Determination of glyoxal, methylglyoxal, and diacetyl in selected beer and wine, by HPLC with UV spectrophotometric detection, after derivatization with o-phenylenediamine. Journal of liquid chromatography & related technologies, 22(13), 2061-2069.
del Carmen Hurtado-Sánchez, M., Espinosa-Mansilla, A., & Durán-Merás, I. (2015). Influence of the presence of natural monosaccharides in the quantification of α-dicarbonyl compounds in high content sugar samples. A comparative study by ultra-high performance liquid chromatography–single quadrupole mass spectrometry using different derivatization reactions. Journal of Chromatography A, 1422, 117-127.
Hellwig, M., Nobis, A., Witte, S., & Henle, T. (2016). Occurrence of (Z)-3, 4-dideoxyglucoson-3-ene in different types of beer and malt beer as a result of 3-deoxyhexosone interconversion. Journal of agricultural and food chemistry, 64(13), 2746-2753.
Zhang, W., Poojary, M. M., Rauh, V., Ray, C. A., Olsen, K., & Lund, M. N. (2019). Quantitation of α-Dicarbonyls and Advanced Glycation Endproducts in Conventional and Lactose-Hydrolyzed Ultrahigh Temperature Milk during 1 Year of Storage. Journal of Agricultural and Food Chemistry, 67(46), 12863-12874.
Guerra-Hernández, E., Ramirez-Jiménez, A., & García-Villanova, B. (2002). Glucosylisomaltol, a new indicator of browning reaction in baby cereals and bread. Journal of agricultural and food chemistry, 50(25), 7282-7287.
Rufián-Henares, J. A., Delgado-Andrade, C., & Morales, F. J. (2006). Analysis of heat-damage indices in breakfast cereals: Influence of composition. Journal of Cereal Science, 43(1), 63-69.
Rufián-Henares, J. A., Delgado-Andrade, C., & Morales, F. J. (2008). Relevance of glucosylisomaltol and galactosylisomaltol in commercial biscuits. European Food Research and Technology, 227(5), 1447.
Rufin-Henares, J. A., Delgado-Andrade, C., & Morales, F. J. (2006). Application of a fast high-performance liquid chromatography method for simultaneous determination of furanic compounds and glucosylisomaltol in breakfast cereals. Journal of AOAC International, 89(1), 161-165.
Solís-Casanova, E., Contreras-Calderón, J., Guerra-Hernández, E. J., & García-Villanova, B. (2011). Usefulness of determination of glucosylisomaltol and hydroxymethylfurfural to control browning reaction during storage of baby cereals Utilidad de la determinación de glucosilisomaltol e hidroximetilfurfural para el control de la reacción de pardeamiento durante la conservación de cereales infantiles. CyTA-Journal of Food, 9(2), 141-145.
TOKUŞOĞLU, Ö., Akalin, A. S., & Unal, K. (2006). RAPID HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC DETECTION OF FUROSINE (ε‐N‐2‐FUROYLMETHYL‐L‐LYSINE) IN YOGURT AND CHEESE MARKETED IN TURKEY. Journal of food quality, 29(1), 38-46.
N/A
Biemel, K. M., Bühler, H. P., Reihl, O., & Lederer, M. O. (2001). Identification and quantitative evaluation of the lysine‐arginine crosslinks GODIC, MODIC, DODIC, and glucosepan in foods. Food/Nahrung, 45(3), 210-214.
del Castillo, M. D., Villamiel, M., Olano, A., & Corzo, N. (2000). Use of 2-furoylmethyl derivatives of GABA and arginine as indicators of the initial steps of Maillard reaction in orange juice. Journal of agricultural and food chemistry, 48(9), 4217-4220.
Soria, A. C., Corzo-Martinez, M., Montilla, A., Riera, E., Gamboa-Santos, J., & Villamiel, M. (2010). Chemical and physicochemical quality parameters in carrots dehydrated by power ultrasound. Journal of agricultural and food chemistry, 58(13), 7715-7722.
Soria, A. C., Olano, A., Frías, J., Peñas, E., & Villamiel, M. (2009). 2‐Furoylmethyl amino acids, hydroxymethylfurfural, carbohydrates and β‐carotene as quality markers of dehydrated carrots. Journal of the Science of Food and Agriculture, 89(2), 267-273.
Zoller, O et al. . (2007). Furan in food: Headspace method and product survey. Food Additives & Contaminants. 24 (-), 91-107.
Moorehouse, K et al.. (2008). Survey of furan in heat processed foods by headspace gas chromatography/mass spectrometry and estimated adult exposure. Food Additives & Contaminants Part A. 28 (3), 259-264.
Nie, S et al. (2013). Analysis of furan in heat-processed foods in China by automated headspace gaschromatography-mass spectrometry (HS-GC-MS). Food Control. 30 (-), 62-68.
Perez, T et al. (2013). Impact of cooking and handling conditions on furanic compounds in breadedfish products. Food and Chemical Toxicology. 55 (-), 222-228.
Kim et al. (2016). Determination of furan levels in commercial orange juice products andits correlation to the sensory and quality characteristics. Food Chemistry. 211 (-), 654-660
Shen et al. (2016). Simultaneous determination of furan and 2-alkylfurans in heat-processed foods by automated static headspace gas chromatography-mass spectrometry. LWT - Food Science and Technology. 72 (-), 44-54.
Juániz et al. (2016). Effect of frying process on furan content in foods and assessment of furan exposure of Spanish population. LWT - Food Science and Technology. 68 (-), 549-555.
Huang et al. (2016). Kinetics of furan formation during pasteurisation of soy sauce . LWT - Food Science and Technology. 67 (-), 200-205.
Lambert et al. (2018). Levels of furan in foods from the first French Total Diet Study on infants and toddlers. Food Chemistry. 266 (-), 381-388.
Condurso et al. (2018). Determination of furan and furan derivatives in baby food. Food Chemistry. 250 (-), 155-161.
Fromberg et al . (2014). Furan and Alkylated Furans in Heat Processed Food, Including Home Cooked Products. Czech Journal of Food Science . 32 (5), 443-448
Becalski et al. (2016). Furan, 2-methylfuran and 3-methylfuran in coffee on the Canadianmarket. Journal of Food Composition and Analysis . 47 (-), 113-119
Becalski et al. (2010). Development of an analytical method and survey of foods for furan, 2-methylfuran and 3- methylfuran with estimated exposure. Food Additives & Contaminants. 27 (6), 764-775.
Ho et al. (2005). Determination of Furan Levels in Coffee Using Automated Solid-Phase Microextraction and Gas Chromatography/ Mass Spectrometry. Journal of AOAC International. 88 (2), 574-576.
Nyman et al . (2006). Single-Laboratory Validation of a Method for the Determination of Furan in Foods by Using Static Headspace Sampling and Gas Chromatography/Mass Spectrometry. Journal of AOAC International. 89 (5), 1417-1424
Bianchi et al. (2006). Development and validation of a solid phase micro-extraction–gaschromatography–mass spectrometry method for the determinationof furan in baby-food. Journal of Chromatography A. 1102 (-), 268-272
Sijia et al . (2014). Detection of furan levels in select Chinese foods by solid phasemicroextraction–gas chromatography/mass spectrometry methodand dietary exposure estimation of furan in the Chinese population. Food and Chemical Toxicology. 64 (-), 34-40
Habibi et al. (2013). Headspace Liquid-Phase Microextraction Followed by Gas Chromatography–Mass Spectrometry for Determination of Furanic Compounds in Baby Foods and Method Optimization Using Response Surface Methodology. Food Anal. Methods . 6 (-), 1056-1064
FDA. (2009). Exploratory Data on Furan in Food. Available: https://www.fda.gov/food/chemicals/exploratory-data-furan-food. Last accessed 24th March 2021.
Palmers et al. (2015). Furan formation during storage and reheating of sterilised vegetable purées. Food Additives & Contaminants Part A. 32 (2), 161-169.
Altaki et al . (2017). Furan in commercial baby foods from the Spanish market: estimation of daily intake and risk assessment. Food Additives & Contaminants Part A. 34 (5), 728-739.
Lachenmeier et al. (2009). Risk assessment of furan in commercially jarred baby foods, including insights into its occurrence and formation in freshly home-cooked foods for infants and young children. Food Additives & Contaminants. 26 (6), 776–785.
Kim et al . (2009). Effect of cooking or handling conditions on the furan levels of processed foods. Food Additives & Contaminants. 26 (6), 767–775.
Reinhard et al . (2004). Furan in Foods on the Swiss Market – Method and Results. Food Chemistry and Hygiene Work. 95 (5), 532-535.
Hasnip et al . (2006). Some factors affecting the formation of furan in heated foods. Food Additives & Contaminants. 23 (3), 219-227.
Mariotti et al . (2013). Are Chileans exposed to dietary furan?. Food Additives & Contaminants Part A. 30 (10), 1715-1721.
Pera et al. (2009). Analysis of furan in coffee of different provenance by head-space solid phase microextraction gas chromatography–mass spectrometry: effect of brewing procedures. Food Additives & Contaminants. 26 (6), 786-792.
Jestoi et al.. (-). Furan in the baby-food samples purchased from the Finnish markets – Determination with SPME–GC–MS. Food Chemistry . 117 (2009), 522–528.
Ruiz et al. (2010). Determination of furan in jarred baby food purchased from the Spanish market by headspace gas chromatography-mass spectrometry (HS-GC- MS). Food Additives & Contaminants. 27 (9), 1208-1214.
Arisseto et al. (2012). Occurrence of furan in commercial processed foods in Brazil. Food Additives & Contaminants Part A. 29 (12), 1832-1839.
Akgün, B., & Arıcı, M. (2019). Evaluation of acrylamide and selected parameters in some Turkish coffee brands from the Turkish market. Food Additives & Contaminants: Part A, 36(4), 548-560.
Alghamdi, B. A., Alshumrani, E. S., Saeed, M. S. B., Rawas, G. M., Alharthi, N. T., Baeshen, M. N., ... & Suhail, M. (2020). Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi Journal of Biological Sciences.
Ameur, L. A., Trystram, G., & Birlouez-Aragon, I. (2006). Accumulation of 5-hydroxymethyl-2-furfural in cookies during the backing process: Validation of an extraction method. Food chemistry, 98(4), 790-796.
Arribas-Lorenzo, G., & Morales, F. J. (2010). Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food and Chemical Toxicology, 48(2), 644-649.
Bignardi, C., Cavazza, A., & Corradini, C. (2014). Selected product ion monitoring for quantification of 5-hydroxymethylfurfural in food products by capillary zone electrophoresis-tandem ion trap mass spectrometry. Food control, 46, 41-48.
Castellari, M., Sartini, E., Spinabelli, U., Riponi, C., & Galassi, S. (2001). Determination of carboxylic acids, carbohydrates, glycerol, ethanol, and 5-HMF in beer by high-performance liquid chromatography and UV-refractive index double detection. Journal of chromatographic science, 39(6), 235-238.
de Andrade, J. K., Komatsu, E., Perreault, H., Torres, Y. R., da Rosa, M. R., & Felsner, M. L. (2016). In house validation from direct determination of 5-hydroxymethyl-2-furfural (HMF) in Brazilian corn and cane syrups samples by HPLC–UV. Food chemistry, 190, 481-486.
Delgado-Andrade, C., Rufian-Henares, J. A., & Morales, F. J. (2009). Hydroxymethylfurfural in commercial biscuits marketed in Spain. Journal of Food & Nutrition Research, 48(1).
Driffield, M., Chan, D., Macarthur, R., MacDonald, S., Brereton, P., & Wood, R. (2005). Single laboratory validation of a method for the determination of hydroxymethylfurfural in honey by using solid-phase extraction cleanup and liquid chromatography. Journal of AOAC International, 88(1), 121-127.
Feng, T. T., Liang, X., Wu, J. H., Qin, L., Tan, M. Q., Zhu, B. W., & Xu, X. B. (2017). Isotope dilution quantification of 5-hydroxymethyl-2-furaldehyde in beverages using vortex-assisted liquid–liquid microextraction coupled with ESI-HPLC-MS/MS. Analytical Methods, 9(25), 3839-3844.
Garcia-Villanova, B., Guerra-Hernandez, E., Martinez-Gomez, E., & Montilla, J. (1993). Liquid chromatography for the determination of 5-(hydroxymethyl)-2-furaldehyde in breakfast cereals. Journal of Agricultural and Food Chemistry, 41(8), 1254-1255.
Gaspar, E. M., & Lucena, A. F. (2009). Improved HPLC methodology for food control–furfurals and patulin as markers of quality. Food Chemistry, 114(4), 1576-1582.
Gökmen, V., & Şenyuva, H. Z. (2006). Improved method for the determination of hydroxymethylfurfural in baby foods using liquid chromatography− mass spectrometry. Journal of Agricultural and Food Chemistry, 54(8), 2845-2849.
González, L., Morante-Zarcero, S., Pérez-Quintanilla, D., & Sierra, I. (2020). Hydroxymethylfurfural determination in cereal and insect bars by high-performance liquid chromatography-mass spectrometry employing a functionalized mesostructured silica as sorbent in solid-phase extraction. Journal of Chromatography A, 461124.
Kalábová, L. V. I. B. K., & Večerek, V. (2006). Hydroxymethylfurfural contents in foodstuffs determined by HPLC method. Journal of Food and Nutrition Research, 45(1), 34-38.
Kus, S., Gogus, F., & Eren, S. (2005). Hydroxymethyl furfural content of concentrated food products. International Journal of Food Properties, 8(2), 367-375.
Li, H., Wu, C. J., Tang, X. Y., & Yu, S. J. (2019). Determination of Four Bitter Compounds in Caramel Colors and Beverages Using Modified QuEChERS Coupled with Liquid Chromatography-Diode Array Detector-Mass Spectrometry. Food Analytical Methods, 12(7), 1674-1683.
Mesias, M., Delgado-Andrade, C., & Morales, F. J. (2019). Risk/benefit evaluation of traditional and novel formulations for snacking: Acrylamide and furfurals as process contaminants. Journal of Food Composition and Analysis, 79, 114-121.
Morales, F. J., & Jiménez-Pérez, S. (2001). Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food chemistry, 72(4), 525-531.
Murkovic, M., & Pichler, N. (2006). Analysis of 5‐hydroxymethylfurfual in coffee, dried fruits and urine. Molecular nutrition & food research, 50(9), 842-846.
Nozal, M. J., Bernal, J. L., Toribio, L., Jiménez, J. J., & Martı́n, M. T. (2001). High-performance liquid chromatographic determination of methyl anthranilate, hydroxymethylfurfural and related compounds in honey. Journal of Chromatography A, 917(1-2), 95-103.
Oroian, M., Amariei, S., Rosu, A., & Gutt, G. (2015). Classification of unifloral honeys using multivariate analysis. Journal of Essential Oil Research, 27(6), 533-544.
Petisca, C., Henriques, A. R., Pérez-Palacios, T., Pinho, O., & Ferreira, I. M. P. L. V. O. (2014). Assessment of hydroxymethylfurfural and furfural in commercial bakery products. Journal of Food Composition and Analysis, 33(1), 20-25.
Qin, L., Zhang, Y. Y., Xu, X. B., Wang, X. S., Liu, H. W., Zhou, D. Y., ... & Thornton, M. (2017). Isotope dilution HPLC-MS/MS for simultaneous quantification of acrylamide and 5-hydroxymethylfurfural (HMF) in thermally processed seafood. Food chemistry, 232, 633-638.
Ramı́rez-Jiménez, A., Garcı́a-Villanova, B., & Guerra-Hernández, E. (2000). Hydroxymethylfurfural and methylfurfural content of selected bakery products. Food Research International, 33(10), 833-838.
Rodrigues, N. P., & Bragagnolo, N. (2013). Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. Journal of Food Composition and Analysis, 32(2), 105-115.
Ruiz-Matute, A. I., Soria, A. C., Sanz, M. L., & Martínez-Castro, I. (2010). Characterization of traditional Spanish edible plant syrups based on carbohydrate GC–MS analysis. Journal of food composition and analysis, 23(3), 260-263.
Švecová, B., & Mach, M. (2017). Content of 5-hydroxymethyl-2-furfural in biscuits for kids. Interdisciplinary Toxicology, 10(2), 66-69.
Viegas, O., Prucha, M., Gökmen, V., & Ferreira, I. M. (2018). Parameters affecting 5-hydroxymethylfurfural exposure from beer. Food additives & contaminants: part A, 35(8), 1464-1471.
Wang, J., & Schnute, W. C. (2012). Simultaneous quantitation of 2-acetyl-4-tetrahydroxybutylimidazole, 2-and 4-methylimidazoles, and 5-hydroxymethylfurfural in beverages by ultrahigh-performance liquid chromatography–tandem mass spectrometry. Journal of agricultural and food chemistry, 60(4), 917-921.
Yuan, J. P., & Chen, F. (1998). Separation and identification of furanic compounds in fruit juices and drinks by high-performance liquid chromatography photodiode array detection. Journal of agricultural and food chemistry, 46(4), 1286-1291.
Zappala, M., Fallico, B., Arena, E., & Verzera, A. (2005). Methods for the determination of HMF in honey: a comparison. Food control, 16(3), 273-277.
Demirhan et al.. (2015). Short communication: Determination of potential 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde compounds in follow-on milks and infant formulas using the high-performance liquid chromatography method. Journal of Dairy Science . 98 (2), 818-822.
Petisca et al. (2014). Assessment of hydroxymethylfurfural and furfural in commercialbakery products. Journal of Food Composition and Analysis. 33 (-), 20-25.
Meísas and Morales. (2014). Reliable estimation of dietary exposure to furan from coffee:An automatic vending machine as a case study. Food Research International . 61 (-), 257-263.
Hurtado et al. (1997). Determination of Free and Total Furfural Compounds in Infant Milk Formulas by High-Performance Liquid Chromatography. Journal of Agriculture and Food Chemistry . 45 (6), 2128−2133.
Mendoza et al.. (2002). Determination of hydroxymethylfurfural in commercial jams and infruit-based infant food. Food Chemistry. 79 (-), 513–516.
Hernandes et al . (2019). Validation of an analytical method using HS-SPME- GC/MS-SIM to assess the exposure risk to carbonyl compounds and furan derivatives through beer consumption. Food Additives & Contaminants Part A. 36 (12), 1808-1821.
Teixidó et al . (2006). Analysis of 5-hydroxymethylfurfural in foods bygas chromatography–mass spectrometry. Journal of Chromatography A. 1135 (-), 85–90.
Domíngue et al. (2019). Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods . 12 (-), 1263–1284.